
Processing data with Python
using standard library modules you
(probably) never knew about

PyCon AU 2012
Tutorial

Graeme Cross

This is an introduction to…

• Python's data containers
• Choosing the best container for the job
• Iterators and comprehensions
• Useful modules for working with data

I am assuming…

• You know how to program (at least a bit!)
• Some familiarity with Python basics
• Python 2.7 (but not Python 3)
– Note: the examples work with Python 2.7
– Some won't work with Python 2.6

Along the way, we will…

• Check out the AFL ladder
• Count yearly winners of the Sheffield Shield
• Parlez-vous Français?
• Find the suburb that uses the most water
• Use set theory on the X-Men
• Analyse Olympic medal results

The examples and these notes

• We will use a number of demo scripts
– This is an interactive tutorial
– If you have a laptop, join in!
–We will use ipython for the demos

• Code is on USB sticks being passed around
• Code & these notes are also at:

http://www.curiousvenn.com/

http://www.curiousvenn.com/

ipython

• A very flexible Python shell
• Works on all platforms
• Lots of really nice features:
– Command line editing with history
– Coloured syntax
– Edit and run within the shell
–Web notebooks, Visual Studio, Qt, …
–%lsmagic

• http://ipython.org/
http://ipython.org/presentation.html

http://ipython.org/
http://ipython.org/presentation.html

Interlude 0

Simple Python data types

• Numbers
answer = 42

pi = 3.141592654

• Boolean
exit_flag = True

winning = False

• Strings
my_name = "Malcolm Reynolds"

Python data containers

• Can hold more than one object
• Have a consistent interface between

different types of containers
• Fundamental to working in Python

Python sequences

• A container that is ordered by position
• Store and access objects by position
• Python has 7 fundamental sequence types
• Examples include:
– string
– list
– tuple

Fundamental sequence opreations

Name Purpose

x in s
x not in s

True if the object x is in the sequence s
True if the object x is NOT in the sequence s

s + t Concatenate two sequences

s * n Concatentate sequence s n times

s[i] Return the object in sequence s at position i

s[i:j]
s[i:j:k]

Return a slice of objects in the sequence s from position i
to j
Can have an optional step value, k

len(s) Return the number of objects in the sequence s

s.index(x) Return the index of the first occurrence of x in the
sequence s

s.count(x) Return the number of occurrences of x in the sequence s

min(s), max(s) Return smallest or largest element in sequence s

The string type

• A string is a sequence of characters
• Strings are delimited by quotes (' or ")

my_name = "Buffy"

her_name = 'Dawn'

• Strings are immutable
– You can't assign to a position

string positions

• The sequence starts at position 0
• Use location[n] to access the character at

position n from the start, first = 0
• Use location[-n] to access the character

that is at position n from the end, last = -1

string position example

• A string with 26 characters
• Positions index from 0 to 25

location = "Arkham Asylum, Gotham City"

location[0] 'A'

location[15] 'G'

location[25] or location[-1] 'y'

location[-4] 'C'

string position slices

• You can return a substring by slicing with
two positions

• For example, return the string from position
15 up to (but not including) position 21

location = "Arkham Asylum, Gotham City"

location[15] 'G'

location[20] 'm'

location[15:21] Gotham'

Useful string functions & methods

Name Purpose

len(s) Calculate the length of the string s

+ Add two strings together

* Repeat a string

s.find(x) Find the first position of x in the string s

s.count(x) Count the number of times x is in the string s

s.upper()
s.lower()

Return a new string that is all uppercase or
lowercase

s.replace(x, y) Return a new string that has replaced the substring
x with the new substring y

s.strip() Return a new string with whitespace stripped from
the ends

s.format() Format a string's contents

Some string demos

Example: string1.py

Iterating through a string

• You can visit each character in a string
• This process is called iteration
• The 'for' keyword is used to step or iterate

through a sequence
• Example: string2.py

From here…

• We didn't mention:
– Unicode
– The "is" methods, such as islower()
– Splitting and joining strings – that's coming!
– Different ways of formatting strings
– Strings from files, internet data, XML, JSON,…

• The string module
• The re module
– Regular expression pattern matching

Interlude 1

list

• A simple sequence of objects
• Just like a string…
– All the methods you have already learnt work

• Except…
– It is mutable (you can change the contents)
– Not just for characters

• Objects separated by commas
• Wrapped inside square brackets

Useful list functions & methods

Name Purpose

len(x) Calculate the length of the list x

x.append(y) Add the object y to the end of the list x

x.extend(y) Extend the list x with the contents of the list y

x.insert(n, y) Insert object y into the list x before position n

x.pop()
x.pop(n)

Remove and return the first object in the list
Remove and return the object at position n

x.count(y) Count the number of times object y is in the list

x.sort() Sorts the list x in-place

sorted(x) Returns sorted version of x (does not change x)

x.reverse() Reverses the list x in-place

Some list demos

Examples: list1.py list4.py→

list iteration

• Same concept as string iteration
• Example: list5.py

list of lists

• A list can hold any other object
• This includes other lists
• Example: lol.py

list comprehensions

• A compact way to create a list
• Build the list by applying an expression to

each element in a sequence
• Can contain logic and function calls
• Uses square brackets (list)
• Syntax:

[output_func(var) for var in input_list if predicate]

list comprehension advantages

• Focus is on the logic, not loop mechanics
• Less code, more readable code
• Can nest comprehensions, keeping logic in a

single place
• Easier to map algorithm to working code
• Widely used in Python (and many other

languages, especially functional languages)

list comprehension examples

• Some simple examples:

single_digits = [n for n in range(10)]

squares = [x*x for x in range(10)]

even_sq = [i*i for i in squares if i%2 == 0]

• Example: comp1.py

list traps

• Copying actually copying references→
• Passing lists in to functions/methods

Interlude 2

dictionary

• A container that maps a key to a value
• The key: any object that is hashable
– It's the hash that is the “real” key

• The value: any object
– Numbers, strings, lists, other dictionaries, ...

• Perfect for look-up tables
• It is not a sequence!
• It is not ordered
• Fundamental Python concept and type

Working with dictionaries

• Getting values and testing for keys:
– my_dict[key]
– my_dict.get(key)
– my_dict.get(key, default)

– my_dict.has_key(key)
– key in my_dict
– my_dict.keys()
– my_dict.values()
– my_dict.items()

Iterating over dictionaries

• Can iterate via keys, values or pairs of (key,
value)

• Simple example: dict1.py
• Detailed example: dict2.py

From here with dictionaries

• Lots that we didn't mention!
• Python docs have a good overview of:
–Methods
– Views

• “Learning Python” and “Hello Python”
– Detailed coverage of dictionaries

Interlude 3

tuple

• Immutable, ordered sequence
• Tuples are basically immutable lists
• Delimited by round brackets and separated

by commas
years = (1940, 1945, 1967, 1968, 1970)

• Remember to use a comma with a tuple
containing a single object
numbers = (1.23,)

tuple packing

• Tuples can be packed and unpacked
to/from other objects:
x, y, z = (640, 480, 1.2)

my_point = x, y, z

tuple immutability

• The tuple may be immutable
• But objects inside may not!
• Example: tuple1.py

tuples: why bother?

• A limited, read-only kind of list
• Less methods than lists
• But:
– can pass data around with (more) confidence
– can use (hashable) tuples as dictionary keys

collections.namedtuple

• Remembering the order of data in a tuple
can be tricky

• collections.namedtuple names each field
in a tuple

• More readable than a normal tuple
• Less setup than a class for just data
• Similar to a C struct
• Example: namedtuple1.py

set

• An unordered, mutable collection
• No duplicate entries
• Perfect for logic and set queries
– eg. union and intersection tests

• Is not a sequence
– No indexing, slices, etc

• Can convert to/from other sequences
• Example: set1.py

frozenset

• Same as set except it is immutable
• So can be used as a key for dictionaries

Some less used collections

• array Fast, single type lists
– bytearray Create an array of bytes
– If you are using array, check out numpy
– http://numpy.scipy.org/

• buffer Working with raw bytes
• Queue Sharing data between threads
• struct Convert between Python & C

http://numpy.scipy.org/

Interlude 4

Useful inbuilt functions

• Let's play with these sequence functions:
– enumerate()
– min() and max()
– range() and xrange()
– reversed()
– sorted()
– sum()

Functional functions

• A number of very useful functions to
process sequences:
– all()
– any()
– filter()
– map()
– reduce()
– zip()

• Example: func1.py

The collections module

• Counter
–More elegant than using a dictionary and

manually counting
– Example: counter1.py

• namedtuple
– See the previous example

The itertools module

• Very useful standard library module
• Ideal for fast, memory efficient iteration
• http://www.doughellmann.com/PyMOTW/itertools/

• Highlights:
– izip() memory efficient version of zip()→
– imap() & starmap() memory efficient and →

flexible versions of map()
– count() iterator for counting→
– dropwhile() & takewhile() processing lists →

until condition is reached

http://www.doughellmann.com/PyMOTW/itertools/

The pprint module

• Pretty-print complex data structures
• Flexible and customisable
• Uses __repr()__
• pprint()

• pformat()

• Example: pprint1.py

Interlude 5

Containers redux

• list: for simple position-based storage
• tuple: read-only lists
• dict: when you need access by key
• Counter: for counting keys
• namedtuple: tuple < namedtuple < class
• array: lists with speed
• set: for sets! :)

For more information...

• The Python tutorial
– http://python.org/

• Python Module of the Week
– http://www.doughellmann.com/PyMOTW/

http://python.org/
http://www.doughellmann.com/PyMOTW/

Some good books…

• “Learning Python”, Mark Lutz
• “Hello Python”, Anthony Briggs

	Processing data with Python using standard library modules you (probably) never knew about
	This is an introduction to…
	I am assuming…
	Along the way, we will…
	Slide 5
	Slide 6
	Interlude 0
	Simple Python data types
	Python containers
	Python sequences
	Slide 11
	The string type
	Slide 13
	string position example
	string position slices
	Useful string functions & methods
	Slide 17
	Iterating through a string
	From here…
	Interlude 1
	list
	Slide 22
	A simple demo of most of this
	Slide 24
	Slide 25
	list comprehensions
	Slide 27
	Slide 28
	Slide 29
	Interlude 2
	dictionary
	dictionary more
	Slide 33
	Slide 34
	Interlude 3
	tuple
	tuple packing
	Slide 38
	tuples: why bother?
	Collections.namedtuple
	set
	frozenset
	Some less used collections
	Interlude 4
	Useful inbuilt functions
	Functional functions
	The collections module
	The itertools module
	The pprint module
	Interlude 5
	From more information…
	Slide 52
	Slide 53

