
How to write a well-behaved
Python command line
application

PyCon AU 2012
Tutorial

Graeme Cross

This is an introduction to…

• Writing robust, maintainable command line
applications

• Easily processing command line options
• Filters and files for input/output
• Handling errors and signals
• Testing your app
• Documenting and packaging your app

I am assuming…

• You know how to program (at least a bit!)
• Some familiarity with Python basics
• Python 2.6 or 2.7 (but not Python 3)
• Know the difference between:
– GUI
– Command prompt (C:\> or ~$)

file:///C:/

The examples and these notes

• We will use a number of demo scripts
– This is an interactive tutorial
– If you have a laptop, join in!
–We will use ipython for the demos

• Code is on USB sticks being passed around
• Code & these notes are also at:

http://www.curiousvenn.com/

http://www.curiousvenn.com/

ipython

• A very flexible Python shell
• Works on all platforms
• Lots of really nice features:
– Command line editing with history
– Coloured syntax
– Edit and run within the shell
–Web notebooks, Visual Studio, Qt, …
– %lsmagic

• http://ipython.org/
http://ipython.org/presentation.html

http://ipython.org/
http://ipython.org/presentation.html

Prelude

The command line

• One liners shell scripts applications→ →
• Lots of interfaces:
– Files
– Pipes
– User input/output
– Processes
– Networking

• The Unix model: lots of small tools that
can be combined in lots of useful ways

What is a “well-behaved” app?

• Does one thing well
• Flexible
– eg. handles input from files or pipes

• Robustly handles bad input data
• Gracefully handles errors
• Well-documented for new users

Why Python for the command line?

• Available on a wide range of platforms
• Readable, consistent syntax
– Easy to write & easy to maintain

• Scales well for large apps & libraries
• Lots of modules = excellent support for:
– Operating system functions (eg POSIX)
– Networking
– File systems

Why not Python?

• Simple one-liners often easier in bash
• eg. Neatly list all users in an LDAP group:

smbldap-groupshow $1 | tail -1 | tr [:lower:] [:upper:] | sed s/\,/\ /g | sed s/MEMBERUID:\ //

• Some operating systems are rumoured to
not ship with Python

• Any other reasons??? Ummmm.....

Be platform aware

• Lots of standard library support
• No excuse to not support other platforms!
• Recommended modules for portability:
– os
– os.path
– shutil
– fileinput
– tempfile

• Lots of other modules in PyPI

Here we go!

if __name__ == '__main__'

• For any Python script, break it up into:
– Functions
– A “main” function, called from command line

• Makes it easy to:
– Test functionality
– Reuse functions

• Example: main1.py

Anatomy of the command line

Files

• Reading, writing & appending to files
• Text or binary formats
• This is a tutorial on its own!
• Example: file1.py
• Example: file2.py

Pipes

• Instead of a filename, pipe input/output
• Create chains of tools
• Standard pipes:
– Input: stdin
– Output: stdout & stderr

• The sys module has support for these
• The fileinput module supports reading

from stdin and files
• Example: stdout.py

Argument parsing

• Allow the user to specify arguments
– Edit the script?
–Modify a configuration file?
– Specify arguments on the command line

• Need to handle:
– Flags: -h or --help
– Strings: “Run Forrest, Run”
– Pipes
– Invalid number of commands
– Ideally: type checking, range checking, etc.

Argument parsing options

• Standard library: 3 different modules!
• Recommended module: argparse
• A series of examples:
– uniq1.py uniq4.py→
– uniqsort.py

• Lots more in PyPI!
• Recommended modules from PyPI:
– clint
– docopt

Argument parsing thoughts

• Always provide help at the command line
• Be consistent
– Short and/or long flags?
– Intuitive?
– Ensure dangerous flags are obvious
– Sensible mnemonics for abbreviated flags

Configuration files

• Useful for arguments that:
– Could change
– Don't change very often
– Are probably machine- or user-specific

• Number of standard library modules:
– ConfigParser (INI file format)
– json (human & machine readable)
– xml.* (if you must)
– As well as csv, plistlib (for Mac .plist)

• Don't roll your own config file format!

Calling commands

• Python can execute other applications
• The subprocess module
– The best of the standard library modules
– Spawn a process
– Read/write the input/output/error pipes
– Get return code for error checking
– Does not scale well
– Examples: subprocess1.py & subprocess2.py

Calling commands, the easy way

• The envoy module (from PyPI)
– A whole lot easier
–More Pythonic
– Recommended alternative to the subprocess

module
– https://github.com/kennethreitz/envoy/
– Example: envoy1.py

https://github.com/kennethreitz/envoy/

Error handling

• Robust apps gracefully handle errors
– Catch (all reasonable) errors
– Report errors to the user

• Silently failing is rarely acceptable
• Blowing up is not much better!

Error handling: catching errors

• Exceptions
– Recommended way to handle errors in Python
– Also used for non-error notification
– Example: exception1.py

• Error codes
– Some functions return an error code (instead of

raising an exception)
– Common with C/C++ code interfaced to Python
– Best to wrap these and then raise an exception

Error handling: reporting errors

• For command line apps:
– Print to stderr
– Don't just print errors (to stdout)

• For daemons/services:
– Dedicated log file for the application
–Write to the operating system event log(s)

• Use the logger module
– Don't roll your own!
– http://docs.python.org/library/logging.html

http://docs.python.org/library/logging.html

Signal handling

• Support is provided via the signal module
– Can raise signals
– Can handle incoming signals

• Useful to catch keyboard interrupts
– eg. interrupt a long running process

• Good form to not ignore system exit events
• Example: signal1.py
• Example: signal2.py

Let's take a breather...

Testing

• Well-tested = happy users and maintainers
– Design your app for unit testing
– doctest and unittest are two good approaches
– nose (from PyPI) builds on unittest
–mock for mock testing
– pylint and pychecker: good “lint” tools

• Python Testing Tools Taxonomy:
– Links to testing libraries and tools
– http://wiki.python.org/moin/PythonTestingToolsTaxonomy

http://wiki.python.org/moin/PythonTestingToolsTaxonomy

Documenting your application

• Essential:
– README.txt (overview)
– LICENSE.txt (essential)
– CHANGES.txt (application changelog)
– User documentation/manual

• Formats
– Text file
– HTML (for online or offline use)
–man page
– Example: rsync man page

Packaging your application

• Another whole tutorial topic!
• Use the standard Python distribution tools:
– setup.py
– PyPI (for public distribution)
– http://guide.python-distribute.org/

• Other approaches for specific platforms:
– Debian package (.deb)
– RedHat/SuSE/CentOS (.rpm)
–MSI (Windows)
– etc.

http://guide.python-distribute.org/

This is the end...

For more information...

• The Python tutorial
– http://python.org/

• Python Module of the Week
– http://www.doughellmann.com/PyMOTW/

http://python.org/
http://www.doughellmann.com/PyMOTW/

Some good books…

• “Learning Python”, Mark Lutz
• “Hello Python”, Anthony Briggs

In the beginning

• http://www.cryptonomicon.com/beginning.html

http://www.cryptonomicon.com/beginning.html

	Processing data with Python using standard library modules you (probably) never knew about
	This is an introduction to…
	I am assuming…
	The examples and these notes
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

