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This is an introduction to…

• Writing robust, maintainable command line 
applications

• Easily processing command line options
• Filters and files for input/output
• Handling errors and signals
• Testing your app
• Documenting and packaging your app



I am assuming…

• You know how to program (at least a bit!)
• Some familiarity with Python basics
• Python 2.6 or 2.7 (but not Python 3)
• Know the difference between:
– GUI
– Command prompt (C:\> or ~$ )

file:///C:/


The examples and these notes

• We will use a number of demo scripts
– This is an interactive tutorial
– If you have a laptop, join in!
–We will use ipython for the demos

• Code is on USB sticks being passed around
• Code & these notes are also at:

http://www.curiousvenn.com/

http://www.curiousvenn.com/


ipython

• A very flexible Python shell
• Works on all platforms
• Lots of really nice features:
– Command line editing with history
– Coloured syntax
– Edit and run within the shell
–Web notebooks, Visual Studio, Qt, …
– %lsmagic

• http://ipython.org/
http://ipython.org/presentation.html

http://ipython.org/
http://ipython.org/presentation.html


Prelude



The command line

• One liners  shell scripts  applications→ →
• Lots of interfaces:
– Files
– Pipes
– User input/output
– Processes
– Networking

• The Unix model: lots of small tools that 
can be combined in lots of useful ways



What is a “well-behaved” app?

• Does one thing well
• Flexible
– eg. handles input from files or pipes

• Robustly handles bad input data
• Gracefully handles errors
• Well-documented for new users



Why Python for the command line?

• Available on a wide range of platforms
• Readable, consistent syntax
– Easy to write & easy to maintain

• Scales well for large apps & libraries
• Lots of modules = excellent support for:
– Operating system functions (eg POSIX)
– Networking
– File systems



Why not Python?

• Simple one-liners often easier in bash
• eg. Neatly list all users in an LDAP group:

smbldap-groupshow $1 | tail -1 | tr [:lower:] [:upper:] | sed s/\,/\ /g | sed s/MEMBERUID:\ //

• Some operating systems are rumoured to 
not ship with Python

• Any other reasons??? Ummmm..... 



Be platform aware

• Lots of standard library support
• No excuse to not support other platforms!
• Recommended modules for portability:
– os
– os.path
– shutil
– fileinput
– tempfile

• Lots of other modules in PyPI



Here we go!



if __name__ == '__main__'

• For any Python script, break it up into:
– Functions
– A “main” function, called from command line

• Makes it easy to:
– Test functionality
– Reuse functions

• Example: main1.py



Anatomy of the command line



Files

• Reading, writing & appending to files
• Text or binary formats
• This is a tutorial on its own!
• Example: file1.py
• Example: file2.py



Pipes

• Instead of a filename, pipe input/output
• Create chains of tools
• Standard pipes: 
– Input: stdin
– Output: stdout & stderr

• The sys module has support for these
• The fileinput module supports reading 

from stdin and files
• Example: stdout.py



Argument parsing

• Allow the user to specify arguments
– Edit the script?
–Modify a configuration file?
– Specify arguments on the command line

• Need to handle:
– Flags: -h or --help
– Strings: “Run Forrest, Run”
– Pipes
– Invalid number of commands
– Ideally: type checking, range checking, etc.



Argument parsing options

• Standard library: 3 different modules!
• Recommended module: argparse
• A series of examples:
– uniq1.py  uniq4.py→
– uniqsort.py

• Lots more in PyPI!
• Recommended modules from PyPI:
– clint
– docopt



Argument parsing thoughts

• Always provide help at the command line
• Be consistent
– Short and/or long flags?
– Intuitive?
– Ensure dangerous flags are obvious
– Sensible mnemonics for abbreviated flags



Configuration files

• Useful for arguments that:
– Could change
– Don't change very often 
– Are probably machine- or user-specific

• Number of standard library modules:
– ConfigParser (INI file format)
– json (human & machine readable)
– xml.* (if you must)
– As well as csv, plistlib (for Mac .plist)

• Don't roll your own config file format!



Calling commands

• Python can execute other applications
• The subprocess module
– The best of the standard library modules
– Spawn a process
– Read/write the input/output/error pipes
– Get return code for error checking
– Does not scale well
– Examples: subprocess1.py & subprocess2.py



Calling commands, the easy way

• The envoy module (from PyPI)
– A whole lot easier
–More Pythonic
– Recommended alternative to the subprocess 

module
– https://github.com/kennethreitz/envoy/
– Example: envoy1.py

https://github.com/kennethreitz/envoy/


Error handling

• Robust apps gracefully handle errors
– Catch (all reasonable) errors
– Report errors to the user

• Silently failing is rarely acceptable
• Blowing up is not much better!



Error handling: catching errors

• Exceptions
– Recommended way to handle errors in Python
– Also used for non-error notification
– Example: exception1.py

• Error codes
– Some functions return an error code (instead of 

raising an exception)
– Common with C/C++ code interfaced to Python
– Best to wrap these and then raise an exception



Error handling: reporting errors

• For command line apps:
– Print to stderr
– Don't just print errors (to stdout)

• For daemons/services:
– Dedicated log file for the application
–Write to the operating system event log(s)

• Use the logger module
– Don't roll your own!
– http://docs.python.org/library/logging.html

http://docs.python.org/library/logging.html


Signal handling

• Support is provided via the signal module
– Can raise signals
– Can handle incoming signals

• Useful to catch keyboard interrupts
– eg. interrupt a long running process

• Good form to not ignore system exit events
• Example: signal1.py
• Example: signal2.py



Let's take a breather...



Testing

• Well-tested = happy users and maintainers
– Design your app for unit testing
– doctest and unittest are two good approaches
– nose (from PyPI) builds on unittest
–mock for mock testing
– pylint and pychecker: good “lint” tools

• Python Testing Tools Taxonomy:
– Links to testing libraries and tools
– http://wiki.python.org/moin/PythonTestingToolsTaxonomy

http://wiki.python.org/moin/PythonTestingToolsTaxonomy


Documenting your application

• Essential:
– README.txt (overview)
– LICENSE.txt (essential)
– CHANGES.txt (application changelog)
– User documentation/manual

• Formats
– Text file
– HTML (for online or offline use) 
–man page
– Example: rsync man page



Packaging your application

• Another whole tutorial topic!
• Use the standard Python distribution tools:
– setup.py
– PyPI (for public distribution)
– http://guide.python-distribute.org/

• Other approaches for specific platforms:
– Debian package (.deb)
– RedHat/SuSE/CentOS (.rpm)
–MSI (Windows)
– etc.

http://guide.python-distribute.org/


This is the end...



For more information...

• The Python tutorial
– http://python.org/

• Python Module of the Week
– http://www.doughellmann.com/PyMOTW/

http://python.org/
http://www.doughellmann.com/PyMOTW/


Some good books…

• “Learning Python”, Mark Lutz
• “Hello Python”, Anthony Briggs



In the beginning

• http://www.cryptonomicon.com/beginning.html

http://www.cryptonomicon.com/beginning.html
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