
Modules 101
How to avoid spaghetti, big balls of mud and houses of straw!

Graeme Cross

Planet Innovation

2

Agenda

● Principles of well structured code
● Benefits of using modules and packages
● Working with modules
● Working with packages
● Some advanced topics we won't cover today
● Where to find more information

3

“Building” software

● A flawed but useful metaphor
– We have software architects

– We build software

– With build tools

– With frameworks, structures, foundations

● Different buildings require different skills and
levels of planning & design
– Software is the same

4https://secure.flickr.com/photos/slimjim/3518930987/

5https://secure.flickr.com/photos/dannysullivan/1428625444/

6https://secure.flickr.com/photos/therefore/18542525/

7https://secure.flickr.com/photos/ell-r-brown/6468414635/

8

Getting design right is critical

● Easy to fix bugs?
● Easy to add new features?
● Easy to understand?

– Today?

– In two years?

– By someone else?

● Easy to test?
● Easy to optimise?

9https://secure.flickr.com/photos/orangejack/18205225/

10https://secure.flickr.com/photos/iks_berto/1314119929/

11https://secure.flickr.com/photos/adamcohn/4209575383/

12

Some basic design principles

● Separation of concerns
● Abstraction

– DRY: Don't Repeat Yourself

● Composition & the Law of Demeter
– Loose coupling between components

● Functional programming
– Idempotent functions

– Minimise/eliminate state

13

What we want to avoid

● The Big Ball of Mud:
– “Haphazardly structured, sprawling, sloppy,

DuctTape and bailing wire, SpaghettiCode jungle”

– “A casually, even haphazardly, structured system.
Its organization, if one can call it that, is dictated
more by expediency than design.”

● http://www.laputan.org/mud/mud.html

http://www.laputan.org/mud/mud.html

14https://secure.flickr.com/photos/retransmetent/5905787317/

15

Why use modules and packages?

● Python heavily utilises modules & packages
● Smaller pieces, logical groups, less complexity

– Designed for reuse

– Can control the interfaces

– Easier to understand

– Easier to refactor and debug

● Easier to document and test
– Modules can contain their own tests

– Modules can contain their own documentation

16

Far nicer than spaghetti!

17

What is a module?

● A Python file that contains:
– Definitions (functions, classes, etc.)

– Executable code: executed once at import

● Has its own namespace (or symbol table)
– Avoids clashes with other modules

● Fundamental library building block
● Has a .py extension (normally)
● Module name is the filename's basename :

– os.py → module name is “os”

18

Module search paths

● How does Python find a module?
● It scans through a set of directories until it

finds the module.
● The search order is important!

1.Program's working directory

2.$PYTHONPATH directories

3.Python standard library directories

4.(and any .pth path files)

● sys.path in Python is created from these

19

Namespaces

● You “import” a module
● This creates a module object
● The module objects have attributes

– Functions, classes, variables, doc strings, ...

● These namespaces are dictionaries

20

import

● import

– The way to access a module or package

– Gives access to attributes in another Python file

– Classes, functions, global variables, etc.

● Modules are imported at run-time
– Located, byte-compiled, executed

– This is not the same as C's #include

– Specify the module's basename, not extension
– import math (not import math.py)

21

as

● Is your module name so long it annoys you?
● The “as” keyword creates an alias:

import myverylongmodulename as shorty

x = shorty.random()

22

from

● from

– An extension of import, but copies the module
names into the current scope

– from makes a copy = lots of surprises!

● To import all names from a module:

from module import *

● _ prefixed names are not imported with:

from *

23

What is in that module?

● Use dir() and help():
>>> import math

>>> dir()

>>> dir(math)

>>> help(math)

● Alternatively, import the see module:
$ pip install see

$ python

>>> from see import see

>>> import math

>>> see(math)

24

Avoid clutter and clashes

● Don't use:
>>> from mymodule import *

>>> from mymodule import year

>>> year = 1967

● Instead:
>>> import mymodule

>>> mymodule.year = 1967

● It's too easy to:
– Pollute your namespaces (see badimport.py)

– Confuse your reader and your tools

25

reload

● reload

– Re-imports and re-executes a module

– Works on an existing module object (not file)

– Is a function (unlike import and from)

– Very useful in lots of circumstances, but...

– Has numerous caveats, so use wisely!

● In Python 3.x, reload is not a built-in:
>>> import imp

>>> imp.reload(modulename)

26

Warnings!

● Do not use module names that:
– Are the same as standard library module names

– Are the same as Python keywords

● Use from sparingly
● Be very careful using reload()
● (As always) avoid global variables
● Don't change variables in other modules

27

Executing modules

● if __name__ == '__main__'

– Module is being executed as a script

– Examples:

$ python -m calendar

$ python mymodule

● Very useful
– Create a command line tool, or

– Automatically run unit tests from command line

28

Documenting modules

● Modules are documented the same way as
functions and classes

● Very useful for providing an overview
● Have a look at examples in the standard

library, some are beautiful CS lectures:

$ python -c "import heapq; print heapq.__about__"

29

Packages

● Module = file → Python namespace
● Package = directory → Python namespace
● Perfect for organising module hierarchies
● To import a module from a package:

– Module location is mypath/mymodule.py
>>> import mypath.mymodule

– For this to work, the mypath directory must be in
the Python search path

30

Defining packages: __init__.py

● A package is defined as a directory that
contains a file named __init__.py
– __init__.py can be empty, it simply has to be

exist

– Any code in __init__.py is executed when the
package is first imported

● If you are using Python 2, packages must
have a __init__.py file

● If you are using Python 3.3, they are optional

31

Subpackages

● You can have hierarchies of packages
● For example, the frogger/ui/sprites/

directory can be imported as a package:
>>> import frogger.ui.sprites

● The as keyword is useful for large hierarchies:
>>> import frogger.ui.sprites.cars as cars

32

Why packages?

● Simplify your search path
● Reduce/eliminate module name clashes
● Organise modules logically in a project
● Organise modules across multiple projects

– In a company

– In projects with shared dependencies

33

Fun & interesting modules

>>> import antigravity

>>> import this

>>> from __future__ import braces

>>> import heapq
>>> print heapq.__about__

34

Executable modules

● Lots of modules are command line tools
● See http://www.curiousvenn.com/?p=353

http://www.curiousvenn.com/?p=353

35

Advanced topics to explore next

● Package import control with __all__
● Absolute versus relative imports
● zip packages
● from __future__

● Installing packages (PyPI, pip, virtualenv)
● How modules are compiled (.pyc and .pyo files)
● Creating packages for distribution (e.g. on PyPI)
● Import hooks – for creating your own import

functions (e.g. plugins, decryption)
● Writing extension modules (in C)

36

For more information

Online documentation:

● The standard Python documentation

● The Hitchhiker's Guide to Python

● Learn Python the hard way

Books:

● “Learning Python”, Mark Lutz (O'Reilly)

● “Hello Python!”, Anthony Briggs (Manning)

● “Beautiful Code”, Andy Oram & Greg Wilson (O'Reilly)

37

These notes

These notes will be available:
● On Slideshare: http://www.slideshare.net/
● On my blog: http://curiousvenn.com/

http://www.slideshare.net/
http://curiousvenn.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

