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Agenda

● Principles of well structured code
● Benefits of using modules and packages
● Working with modules
● Working with packages
● Some advanced topics we won't cover today
● Where to find more information
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“Building” software

● A flawed but useful metaphor
– We have software architects

– We build software

– With build tools

– With frameworks, structures, foundations

● Different buildings require different skills and 
levels of planning & design
– Software is the same
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Getting design right is critical

● Easy to fix bugs?
● Easy to add new features?
● Easy to understand?

– Today?

– In two years?

– By someone else?

● Easy to test?
● Easy to optimise?
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Some basic design principles

● Separation of concerns
● Abstraction

– DRY: Don't Repeat Yourself

● Composition & the Law of Demeter
– Loose coupling between components

● Functional programming
– Idempotent functions

– Minimise/eliminate state
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What we want to avoid

● The Big Ball of Mud:
– “Haphazardly structured, sprawling, sloppy, 

DuctTape and bailing wire, SpaghettiCode jungle”

– “A casually, even haphazardly, structured system. 
Its organization, if one can call it that, is dictated 
more by expediency than design.”

● http://www.laputan.org/mud/mud.html

http://www.laputan.org/mud/mud.html
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Why use modules and packages?

● Python heavily utilises modules & packages
● Smaller pieces, logical groups, less complexity

– Designed for reuse 

– Can control the interfaces

– Easier to understand

– Easier to refactor and debug

● Easier to document and test
– Modules can contain their own tests

– Modules can contain their own documentation
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Far nicer than spaghetti!
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What is a module?

● A Python file that contains:
– Definitions (functions, classes, etc.)

– Executable code: executed once at import

● Has its own namespace (or symbol table)
– Avoids clashes with other modules

● Fundamental library building block
● Has a .py extension (normally)
● Module name is the filename's basename :

– os.py → module name is “os”
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Module search paths

● How does Python find a module?
● It scans through a set of directories until it 

finds the module.
● The search order is important!

1.Program's working directory

2.$PYTHONPATH directories

3.Python standard library directories

4.(and any .pth path files)

● sys.path in Python is created from these
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Namespaces

● You “import” a module 
● This creates a module object
● The module objects have attributes

– Functions, classes, variables, doc strings, ...

● These namespaces are dictionaries
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import

● import

– The way to access a module or package

– Gives access to attributes in another Python file

– Classes, functions, global variables, etc.

● Modules are imported at run-time
– Located, byte-compiled, executed

– This is not the same as C's #include

– Specify the module's basename, not extension
– import math (not import math.py)
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as

● Is your module name so long it annoys you?
● The “as” keyword creates an alias:

import myverylongmodulename as shorty

x = shorty.random()
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from

● from

– An extension of import, but copies the module 
names into the current scope

– from makes a copy = lots of surprises!

● To import all names from a module:

from module import *

● _ prefixed names are not imported with:

from *
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What is in that module?

● Use dir() and help():
>>> import math

>>> dir()

>>> dir(math)

>>> help(math)

● Alternatively, import the see module:
$ pip install see

$ python

>>> from see import see

>>> import math

>>> see(math)
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Avoid clutter and clashes

● Don't use:
>>> from mymodule import *

>>> from mymodule import year

>>> year = 1967

● Instead:
>>> import mymodule

>>> mymodule.year = 1967

● It's too easy to:
– Pollute your namespaces (see badimport.py)

– Confuse your reader and your tools
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reload

● reload

– Re-imports and re-executes a module

– Works on an existing module object (not file)

– Is a function (unlike import and from)

– Very useful in lots of circumstances, but...

– Has numerous caveats, so use wisely!

● In Python 3.x, reload is not a built-in:
>>> import imp

>>> imp.reload(modulename)
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Warnings!

● Do not use module names that:
– Are the same as standard library module names

– Are the same as Python keywords

● Use from sparingly
● Be very careful using reload()
● (As always) avoid global variables
● Don't change variables in other modules
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Executing modules

● if __name__ == '__main__'

– Module is being executed as a script

– Examples:

$ python -m calendar

$ python mymodule

● Very useful
– Create a command line tool, or

– Automatically run unit tests from command line
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Documenting modules

● Modules are documented the same way as 
functions and classes

● Very useful for providing an overview
● Have a look at examples in the standard 

library, some are beautiful CS lectures:

$ python -c "import heapq; print heapq.__about__"
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Packages

● Module = file → Python namespace
● Package = directory → Python namespace
● Perfect for organising module hierarchies
● To import a module from a package:

– Module location is mypath/mymodule.py
>>> import mypath.mymodule

– For this to work, the mypath directory must be in 
the Python search path
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Defining packages: __init__.py

● A package is defined as a directory that 
contains a file named __init__.py
– __init__.py can be empty, it simply has to be 

exist

– Any code in __init__.py is executed when the 
package is first imported

● If you are using Python 2, packages must 
have a __init__.py file

● If you are using Python 3.3, they are optional
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Subpackages

● You can have hierarchies of packages
● For example, the frogger/ui/sprites/ 

directory can be imported as a package:
>>> import frogger.ui.sprites

● The as keyword is useful for large hierarchies:
>>> import frogger.ui.sprites.cars as cars
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Why packages?

● Simplify your search path
● Reduce/eliminate module name clashes
● Organise modules logically in a project
● Organise modules across multiple projects

– In a company

– In projects with shared dependencies
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Fun & interesting modules

>>> import antigravity

>>> import this

>>> from __future__ import braces

>>> import heapq
>>> print heapq.__about__
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Executable modules

● Lots of modules are command line tools
● See http://www.curiousvenn.com/?p=353

http://www.curiousvenn.com/?p=353


35

Advanced topics to explore next

● Package import control with __all__
● Absolute versus relative imports
● zip packages
● from __future__

● Installing packages (PyPI, pip, virtualenv)
● How modules are compiled (.pyc and .pyo files)
● Creating packages for distribution (e.g. on PyPI)
● Import hooks – for creating your own import 

functions (e.g. plugins, decryption)
● Writing extension modules (in C)
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For more information

Online documentation:

● The standard Python documentation

● The Hitchhiker's Guide to Python

● Learn Python the hard way

Books:

● “Learning Python”, Mark Lutz (O'Reilly)

● “Hello Python!”, Anthony Briggs (Manning)

● “Beautiful Code”, Andy Oram & Greg Wilson (O'Reilly)
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These notes

These notes will be available:
● On Slideshare: http://www.slideshare.net/
● On my blog: http://curiousvenn.com/

http://www.slideshare.net/
http://curiousvenn.com/
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